Diseño de estrategias para la compensación del impacto ambiental generado por la empresa UNIPIEDRA, basados en el cálculo de su huella de carbono / Álvaro Javier Diaz Oviedo y José David Loaiza Dájer; director Gean Pablo Mendoza Ortega ; codirector Jose Luis Ruiz Meza.
Material type: TextProducer: Sincelejo : Corporación Universitaria del Caribe – CECAR, 2022Description: 1,4 MB : 81 páginas ; tablas, figurasContent type: texto Media type: computadora Carrier type: recurso en líneaSubject(s): Gases | Energía eléctrica | Efecto invernadero | Estrategias | Gases de efecto invernadero | Huella de carbono | Impacto ambiental | Materiales agregadosDissertation note: Trabajo de grado (Ingeniero de Industrial) -- Corporación Universitaria del Caribe. Facultad de Ciencias Básicas, Ingenierías y Arquitectura. Programa de Ingeniería de Industrial. Sincelejo, 2022 Summary: La investigación presente tiene como fin determinar la estimación de la huella de carbono generada por la fabricación de agregados para la construcción, en la empresa UNIPIEDRA, aplicando la metodología de la medición de huella de carbono PAS 2050, en la cual, se tuvieron en cuenta los datos relacionados con el consumo de energía eléctrica y combustible en los procesos que se realizan en la empresa ya mencionada. En esta investigación se describen los diferentes procesos y actividades, asimismo, el cálculo de las emisiones de gases de efecto invernadero en Kilogramo de CO2 equivalente por producto generado. Los resultados obtenidos arrojaron que, durante el mes de mayo del año 2021, la empresa en sus actividades y procesos genera un total 79.237,623 de kg de CO2 equivalente, donde la gravilla es el subproducto con mayor porcentaje de participación. Continuamente, se diseñaron alternativas para disminuir el impacto ambiental generado por las operaciones y actividades de la empresa, para ello, se implementó la metodología multicriterio para la evaluación jerárquica de estrategias (AHP). Esta investigación puede ser considerada como guía para la empresa en la toma de decisiones para en la búsqueda de estrategias que ayuden a disminuir o controlar las emisiones de gases de efecto invernadero al medio ambiente. El trabajo.Summary: The purpose of the present investigation is to determine the estimation of the carbon footprint generated by the manufacture of aggregates for contruction, in the company UNIPIEDRA, applying the methodology of the carbon footprint measurement PAS 2050, in which, were taken into account the daa related to the consumption of electricity and fuel in the processes carried out in the aforementioned company. This research describes the different processes and activities, as well as the calculation of Greenhouse gas emissions in kilograms of 𝐶𝑂2 equivalent per product generated. The results obtained showed that, during the month of May 2021, the company in its activities and processes generates a total of 79.237,623 de kg of CO2eq, where gravel is the byproduct with the highest percentage of participation. Continuously, alternatives were designed to reduce the environmental impact generateed by the company’s operations and activities, for this, the multi-criteria methodology for the hierarchical evaluation of strategies (AHP) was implemented. This research can be considered as a guide for the company in decision Making in the search for strategies that help reduce or control Greenhouse gas emissions into the environment. El trabajo.Item type | Current library | Call number | Copy number | Status | Date due | Barcode |
---|---|---|---|---|---|---|
Trabajos de Grado | Biblioteca Central | INI-08872 2022 (Browse shelf(Opens below)) | 1 | Available | T08872 |
Trabajo de grado (Ingeniero de Industrial) -- Corporación Universitaria del Caribe. Facultad de Ciencias Básicas, Ingenierías y Arquitectura. Programa de Ingeniería de Industrial. Sincelejo, 2022
Abdul, D., Wenqi, J., & Tanveer, A. (2021). Prioritization of renewable energy source for
electricity generation through AHP-VIKOR integrated methodology. Renewable Energy, 184,
1018–1032. https://doi.org/10.1016/j.renene.2021.10.082
Agency International Energy. (2021). Datos y estadisticas, emisiones de CO2.
https://www.iea.org/data-and-statistics/data-browser?country=WORLD&fuel=CO2
emissions&indicator=TotCO2
Baills, A., Grandjean, G., Ettinger, S., Abad, J., Dias, N., Albris, K., Hemmers, J., Clegg, G., &
Martucci, C. (2020). International Journal of Disaster Risk Reduction The ESPREssO Action
Database : Collecting and assessing measures for disaster risk reduction and climate change
adaptation. 48. https://doi.org/10.1016/j.ijdrr.2020.101599
Bonneuil, C., Choquet, P. L., & Franta, B. (2021). Early warnings and emerging accountability:
Total’s responses to global warming, 1971–2021. Global Environmental Change, 71, 102386.
https://doi.org/10.1016/J.GLOENVCHA.2021.102386
British Standard Institute. (2011). Guide to PAS 2050 How to assess the carbon footprint of goods
and services. In Carbon Trust, UK Department for Environment, Food and Rural Affairs
(Defra). https://www.fao.org/sustainable-food-value-chains/library/detalles/es/c/266040/
BSI. (2011). PAS 2050:2011 Specification for the assessment of the life cycle greenhouse gas
emissions of goods and services. British Standards Institution, London. 1–45.
Büyüközkan, G., Havle, C. A., & Feyzioğlu, O. (2021a). An integrated SWOT based fuzzy AHP
and fuzzy MARCOS methodology for digital transformation strategy analysis in airline
industry. Journal of Air Transport Management, 97(August).
https://doi.org/10.1016/j.jairtraman.2021.102142
Büyüközkan, G., Havle, C. A., & Feyzioğlu, O. (2021b). Digital competency evaluation of lowcost airlines using an integrated IVIF AHP and IVIF VIKOR methodology. Journal of Air
Transport Management, 91(January). https://doi.org/10.1016/j.jairtraman.2020.101998
Chen, X., Wang, H., Horton, R., & DeFlorio, J. (2021). Life-cycle assessment of climate change
impact on time-dependent carbon-footprint of asphalt pavement. Transportation Research
Part D: Transport and Environment, 91(January), 102697.
https://doi.org/10.1016/j.trd.2021.102697
De Brito, M. M., & Evers, M. (2016). Multi-criteria decision-making for flood risk management:
A survey of the current state of the art. Natural Hazards and Earth System Sciences, 16(4),
1019–1033. https://doi.org/10.5194/nhess-16-1019-2016
Denchak, M. (2019). Greenhouse Effect 101. NRDC. https://www.nrdc.org/stories/greenhouseeffect-101
Dias, A. C., & Arroja, L. (2012). Comparison of methodologies for estimating the carbon footprint
– case study of office paper. Journal of Cleaner Production, 24, 30–35.
https://doi.org/10.1016/J.JCLEPRO.2011.11.005
Diaz, D., & Villegas, N. (2015). Correlación canónica entre índices macroclimáticos y variables
meteorológicas de superficie en Colombia. Revista U.D.C.A Actualidad & Divulgación
Científica, 18(2), 543–552. https://doi.org/10.31910/rudca.v18.n2.2015.185
Diaz, H., & Guedes Soares, C. (2021). A novel multi-criteria decision-making model to evaluate
floating wind farm locations. Renewable Energy. https://doi.org/10.1016/j.iref.2021.08.006
Doney, S. C., Busch, D. S., Cooley, S. R., & Kroeker, K. J. (2020). The impacts of ocean
acidification on marine ecosystems and reliant human communities. Annual Review of
Environment and Resources, 45, 83–112. https://doi.org/10.1146/annurev-environ-012320-
083019
El Tiempo. (2021). ¿Cuál ha sido el año más caluroso registrado hasta el momento? - Medio
Ambiente - Vida - ELTIEMPO.COM. https://www.eltiempo.com/vida/medio-ambiente/cualha-sido-el-ano-mas-caluroso-registrado-hasta-el-momento-559462
Garcia, R., & Freire, F. (2014). Carbon footprint of particleboard: A comparison between ISO/TS
14067, GHG Protocol, PAS 2050 and Climate Declaration. Journal of Cleaner Production,
66, 199–209. https://doi.org/10.1016/j.jclepro.2013.11.073
Ge, M., Friedrich, J., & Vigna, L. (2021, September 2). Cuatro gráficos que explican las emisiones
de gases de efecto invernadero por país y por sector | WRI Mexico.
https://wrimexico.org/bloga/cuatro-gráficos-que-explican-las-emisiones-de-gases-de-efectoinvernadero-por-país-y-por
Global Climate Initiatives. (2020, March 11). LAS EMISIONES DIRECTAS E INDIRECTAS.
https://globalclimateinitiatives.com/es/las-emisiones-directas-e-indirectas/
Gui, F., Ren, S., Zhao, Y., Zhou, J., Xie, Z., Xu, C., & Zhu, F. (2019). Activity-based allocation
and optimization for carbon footprint and cost in product lifecycle. Journal of Cleaner
Production, 236, 117627. https://doi.org/10.1016/j.jclepro.2019.117627
Hickmann, T. (2017). Voluntary global business initiatives and the international climate
negotiations: A case study of the Greenhouse Gas Protocol. Journal of Cleaner Production,
169, 94–104. https://doi.org/10.1016/j.jclepro.2017.06.183
Hohenthal, C., Leon, J., Dobon, A., Kujanpää, M., Meinl, G., Ringman, J., Hortal, M., & Forsström,
U. (2019). The ISO 14067 approach to open-loop recycling of paper products: Making it
operational. Journal of Cleaner Production, 224, 264–274.
https://doi.org/10.1016/J.JCLEPRO.2019.03.179
IDEAM. (2016). Y Departamental De Gases Efecto Invernadero - De Gases Efecto.
IDEAM. (2018, December 18). Colombia le presenta al mundo su Reporte de Actualización en
Cambio Climático ante la Convención de Naciones Unidas - NOTICIAS - IDEAM.
http://www.pronosticosyalertas.gov.co/web/sala-de-prensa/noticias/-
/asset_publisher/LdWW0ECY1uxz/content/colombia-le-presenta-al-mundo-su-reporte-deactualizacion-en-cambio-climatico-ante-la-convencion-de-naciones-unidas
Matuštík, J., & Kočí, V. (2021). What is a footprint? A conceptual analysis of environmental
footprint indicators. Journal of Cleaner Production, 285.
https://doi.org/10.1016/j.jclepro.2020.124833
McCaffery, C., Zhu, H., Tang, T., Li, C., Karavalakis, G., Cao, S., Oshinuga, A., Burnette, A.,
Johnson, K. C., & Durbin, T. D. (2021). Real-world NOx emissions from heavy-duty diesel,
natural gas, and diesel hybrid electric vehicles of different vocations on California roadways.
Science of the Total Environment, 784, 147224.
https://doi.org/10.1016/j.scitotenv.2021.147224
Muñoz, B., & Romana, M. (2016). Application of Multicriteria Decision Methods in Evaluating
Alternative for TRanportation Facilities. Pensamiento Matematico, 6, 27–46.
file:///C:/Users/Almacen/Desktop/Tesis/DialnetAplicacionDeMetodosDeDecisionMulticriterioDiscreto-5998856.pdf
Naciones Unidas. (1992). Conferencia de las Partes de la Convención Marco de las Naciones
Unidas sobre el Cambio Climático. Aprobación Del Acuerdo de Paris.
https://unfccc.int/sites/default/files/convention_text_with_annexes_spanish_for_posting.pdf
Naciones Unidas. (2015). De Estocolmo a Kyoto: Breve historia del cambio climatico.
https://www.un.org/es/chronicle/article/de-estocolmo-kyotobreve-historia-del-cambioclimatico
Ng, E. C. Y., Huang, Y., Hong, G., Zhou, J. L., & Surawski, N. C. (2021). Reducing vehicle fuel
consumption and exhaust emissions from the application of a green-safety device under real
driving. Science of the Total Environment, 793(2), 148602.
https://doi.org/10.1016/j.scitotenv.2021.148602
Ramlan, N. A., Yahya, W. J., Ithnin, A. M., Hasannuddin, A. K., Norazni, S. A., Mazlan, N. A.,
Sugeng, D. A., Bahar, N. D., & Koga, T. (2016). Performance and emissions of light-duty
diesel vehicle fuelled with non-surfactant low grade diesel emulsion compared with a high
grade diesel in Malaysia. Energy Conversion and Management, 130(2016), 192–199.
https://doi.org/10.1016/j.enconman.2016.10.057
Rizvi, S., Pagnutti, C., Bauch, C. T., & Anand, M. (2017). Global Land Use Implications of Dietary
Trends: A Tragedy of the Commons. BioRxiv, 1–12. https://doi.org/10.1101/195396
Robert, S., & Schleyer-lindenmann, A. (2021). Land Use Policy How ready are we to cope with
climate change ? Extent of adaptation to sea level rise and coastal risks in local planning
documents of southern France. Land Use Policy, 104, 105354.
https://doi.org/10.1016/j.landusepol.2021.105354
Romero, E. F., & Sevilla, K. M. (2017). Evaluación del impacto ambiental generado por la
extracción y procesamiento de piedra caliza en la trituradora San José en el municipio de
Toluviejo, departamento de Sucre, Colombia.
Rotz, C. A., Montes, F., & Chianese, D. S. (2010). The carbon footprint of dairy production
systems through partial life cycle assessment. Journal of Dairy Science, 93(3), 1266–1282.
https://doi.org/10.3168/jds.2009-2162
Sharif, A., Meo, M. S., Chowdhury, M. A. F., & Sohag, K. (2021). Role of solar energy in reducing
ecological footprints: An empirical analysis. Journal of Cleaner Production, 292, 126028.
https://doi.org/10.1016/j.jclepro.2021.126028
Solano, S., & Ortiz, E. (2016). Methodology for the quantification of the carbon footprint of
buildings in Costa Rica and its application on the residential module Tropika. Tecnologia En
Marcha, 29(3), 73–84. http://dx.doi.org/10.18845/tm.v29i3.2889
Sun, X., Dong, Y., Wang, Y., & Ren, J. (2022). Sources of greenhouse gas emission reductions in
OECD countries: Composition or technique effects. Ecological Economics, 193, 107288.
https://doi.org/10.1016/J.ECOLECON.2021.107288
Vardy, M., Oppenheimer, M., Dubash, N. K., O’Reilly, J., & Jamieson, D. (2017). The
Intergovernmental Panel on Climate Change: Challenges and Opportunities. Annual Review
of Environment and Resources, 42, 55–75. https://doi.org/10.1146/annurev-environ-102016-
061053
Wang, X., Xu, L. L., Cui, S. H., & Wang, C. H. (2020). Reflections on coastal inundation, climate
change impact, and adaptation in built environment: progresses and constraints. Advances in
Climate Change Research, 11(4), 317–331. https://doi.org/10.1016/j.accre.2020.11.010
World Resources Institute, & WBCSD. (2017, December 15). Protocolo de gases de efecto
invernadero. https://ghgprotocol.org/about-us
Wu, L., Huang, K., Ridoutt, B. G., Yu, Y., & Chen, Y. (2021). A planetary boundary-based
environmental footprint family: From impacts to boundaries. Science of the Total
Environment, 785, 147383. https://doi.org/10.1016/j.scitotenv.2021.147383
Wu, P., Xia, B., & Wang, X. (2015). The contribution of ISO 14067 to the evolution of global
greenhouse gas standards—A review. Renewable and Sustainable Energy Reviews, 47, 142–
150. https://doi.org/10.1016/J.RSER.2015.02.055
Yuan-hai, F. U., Xue-jie, G. A. O., Ying-mo, Z. H. U., & Dong, G. U. O. (2021). Climate change
projection over the Tibetan Plateau based on a set of RCM simulations. Advances in Climate
Change Research, xxxx, 1–9. https://doi.org/10.1016/j.accre.2021.01.004
Zen, I. S., Al-Amin, A. Q., Alam, M. M., & Doberstein, B. (2021). Magnitudes of households’
carbon footprint in Iskandar Malaysia: Policy implications for sustainable development.
Journal of Cleaner Production, 315(June), 128042.
https://doi.org/10.1016/j.jclepro.2021.128042
Zhang, S., Taiebat, M., Liu, Y., Qu, S., Liang, S., & Xu, M. (2019). Regional water footprints and
interregional virtual water transfers in China. Journal of Cleaner Production, 228, 1401–1412.
https://doi.org/10.1016/j.jclepro.2019.04.298
La investigación presente tiene como fin determinar la estimación de la huella de carbono generada por la fabricación de agregados para la construcción, en la empresa UNIPIEDRA, aplicando la metodología de la medición de huella de carbono PAS 2050, en la cual, se tuvieron en cuenta los datos relacionados con el consumo de energía eléctrica y combustible en los procesos que se realizan en la empresa ya mencionada. En esta investigación se describen los diferentes procesos y actividades, asimismo, el cálculo de las emisiones de gases de efecto invernadero en Kilogramo de CO2 equivalente por producto generado. Los resultados obtenidos arrojaron que, durante el mes de mayo del año 2021, la empresa en sus actividades y procesos genera un total 79.237,623 de kg de CO2 equivalente, donde la gravilla es el subproducto con mayor porcentaje de participación. Continuamente, se diseñaron alternativas para disminuir el impacto ambiental generado por las operaciones y actividades de la empresa, para ello, se implementó la metodología multicriterio para la evaluación jerárquica de estrategias (AHP). Esta investigación puede ser considerada como guía para la empresa en la toma de decisiones para en la búsqueda de estrategias que ayuden a disminuir o controlar las emisiones de gases de efecto invernadero al medio ambiente. El trabajo.
The purpose of the present investigation is to determine the estimation of the carbon footprint generated by the manufacture of aggregates for contruction, in the company UNIPIEDRA, applying the methodology of the carbon footprint measurement PAS 2050, in which, were taken into account the daa related to the consumption of electricity and fuel in the processes carried out in the aforementioned company. This research describes the different processes and activities, as well as the calculation of Greenhouse gas emissions in kilograms of 𝐶𝑂2 equivalent per product generated. The results obtained showed that, during the month of May 2021, the company in its activities and processes generates a total of 79.237,623 de kg of CO2eq, where gravel is the byproduct with the highest percentage of participation. Continuously, alternatives were designed to reduce the environmental impact generateed by the company’s operations and activities, for this, the multi-criteria methodology for the hierarchical evaluation of strategies (AHP) was implemented. This research can be considered as a guide for the company in decision Making in the search for strategies that help reduce or control Greenhouse gas emissions into the environment. El trabajo.
Ingeniería Industrial
There are no comments on this title.